手机版

可穿戴传感器的最新进展(2)

发布时间:2021-06-29   来源:网络整理    
字号:

研究人员预计,可穿戴传感器可改善医疗保健系统。特别是对于老年人和慢性病患者来说,因为他们需要持续的监测。图3介绍了传感机制,通过无线传输设备将可穿戴系统连接起来,然后将连接到人体的传感器生成的原始数据进行处理并远程传输给医学专家。

 

这些传感器大多用于监测生物体液,特别是汗液,也可以选择性地监测葡萄糖、乳酸、胆固醇和酸碱度等。汗液传感器还可用于检测各种生物分子和盐浓度。对于人类生理活动的监测,如脉搏、水合/脱水、温度、运动、压力等,也值得关注。

 

通过分析呼吸状况,也可以监测生物标志物,因为它与呼吸速率、深部体温、酒精含量以及呼出的挥发性有机化合物有关。大多数可穿戴生物传感器有一个单独的检测部件,它能够同时监测这些不同的生物标志物,而无需医生进行诊断。

 

利用具有生物相容性的材料和基板,可直接将传感器=植入到人的表层皮肤,或者将传感器整合到织入纺织纤维或作为可穿戴设备一部分的基板中。传感和互连设备主要由液相合成的功能材料制成,这些材料在打印过程中很容易成型,这是一种非常经济有效的制造方法。传感器与数据读出和信号调理电路相连接,使数据最终能够通过无线通信工具传输给计算中心或数据分析专家。

 

在大多数情况下,研究人员会选择手持移动设备,作为监控单个对象的计算工具。当需要分析多位用户的数据时,数据会被上传到云端,生成专家意见后再传回给用户。

 

目前,在聚合物基板上打印传感器的异构集成技术,引起了研究人员的关注,而现有的电子设备可以让数据处理和通信过程更快,纳米材料的最新发展使打印有相似基板的多功能传感器成为可能。


图3:通过可穿戴传感器和数据传输监测人体健康状况的信号流程图。

 

打印技术:制造过程更简单、经济、高效

 

打印技术可用于在非平面基板上制造传感器和电子设备。其中涉及使胶体或化学溶液中的功能材料沉积到特定位置。整个过程所需工序远少于标准的微细加工技术。

 

打印是一种“自底向上”的制造方法,即在生产过程中逐层添加材料。与传统的微细加工技术相比,这一特点使打印成为一种简单且经济高效的方法。根据打印介质与目标基板是否接触,打印技术可大致分为两类(图4)。

 

在接触式打印中,操作人员将已经设计好表面结构的打印介质进行上墨,并与目标基板进行物理接触。这种技术可用于丝网印刷、凹版印刷、柔版印刷、移印、转印等。

 

在非接触式打印中,打印头会将材料以微滴或连续喷射的形式喷出。这是数字化制造的一种技术,因为液滴会根据各自的驱动机制按需喷射出来。这种技术主要用于压电喷墨印刷、电流体喷墨印刷、气溶胶喷印等。非接触式打印更具优势,因为它利用了计算机软件,能快速更改设计结构,因此用途更加广泛。

 

此外,这一技术有望改善卷对卷(R2R)印刷工艺。通过安装不同的印刷和固化/烧结系统,作为通用平台的R2R,可用于快速、大批量生产电子元件。但是,对于全打印或半打印传感设备和系统来说,以上提到的每一项技术或工艺都至关重要。




图4:具有代表性的接触式和非接触式印刷技术

 

可穿戴传感器的基板:选用具有生物相容性的惰性材料

 

基板会影响传感器的物理、机械和电气特性。可弯曲性、可折叠性和可拉伸性的程度决定了基板是否能与非平面表面相结合,这是可穿戴电子系统的核心要求。厚度最小的聚合物薄板可作为理想选择。

 

聚酰亚胺、聚氨酯、聚对苯二甲酸乙二醇酯、聚乙烯萘、聚二甲基硅氧烷等,都是常见的聚合物基板材料。它们的化学惰性、热绝缘性和电气绝缘性,使这些聚合物基板成为制造传感器和电子设备的理想材料。

 

图说天下

×
织梦二维码生成器