第二个问题,荧光粉受到电子撞击以后,它的电磁能以什么方式释放出来?我们用‘荧光粉’、‘电子撞击’、‘释放电磁能’等关键词,也可以找到答案:‘光或者光子’。这种方法就是平时网络搜索的原理,应该说没有什么智能。
回答下面的问题就需要‘智能’了,跟智利陆地边界最长的是哪个国家?跟智利有陆地边界的国家可以检索到,它们是阿根廷和玻利维亚,但是谁的边境长?通常查不到。Watson 具备一定的推理能力,它从边界间发生的事件、边界的地理位置等等,经过分析推理以后就可以找出答案,它就是阿根廷。下一个问题也属于这种性质,跟美国没有外交关系的国家中哪个最靠北,跟美国没有外交关系的国家有 4 个,只要检索就行了,但是哪个国家最靠北,没有直接答案,但可以从其它信息中推导出来,比如各个国家所处的纬度、气候寒冷的程度等等分析出来,答案是北朝鲜。
智能体现在推理能力上。但是很不幸,现在的对话系统推理能力都很差。Watson 系统好一些,但也很有限。换句话说,我们现在的对话系统离真正的智能还很远。
我们通过索菲亚机器人就可以看出来,索菲亚的对话是面向开放领域,你可以随便提问,问题就暴露出来了。大家在电视上看到索菲亚侃侃而谈,问什么问题都能答得很好,这里面有玄机,如果你的问题是预先提出来的,因为里头有答案,因此回答得非常好,在电视上给大家演示的都是这种情况。
如果我们临时提问题,问题就出来了。这是一个中国记者给索菲亚提的 4 个问题,它只答对了一个。‘你几岁了’,这个问题很简单,它答不上来,它的回答是‘你好,你看起来不错’,答非所问,因为它不理解你所问的问题。只有第二个问题它是有准备的,里面有答案,所以答得很好。‘你的老板是谁’,这个肯定它有准备。第三个问题,‘你能回答多少问题呢’?它说‘请继续’,没听懂!。再问第四个问题,‘你希望我问你什么问题呢’?它说‘你经常在北京做户外活动吗’?这就告诉我们说,现代的问答系统基本上没有理解,只有少数有少量的理解,像 Watson 这样算是比较好的。
为什么会这样?也就是说我们现在的人工智能基本方法有缺陷,我们必须走向具有理解的 AI,这才是真正的人工智能。我这里提出的概念跟强人工智能有什么区别?首先我们说它在这点上是相同的,我们都试图去准确地描述人类的智能行为,希望人工智能跟人类的智能相近,这也是强人工智能的一个目标,但是强人工智能只是从概念上提出来,并没有从方法上提出怎么解决。大家知道强人工智能提出了一个最主要的概念,就是通用人工智能。怎么个通用法?它没有回答。我们现在提出来的有理解的人工智能是可操作的,不只是概念,这是我们跟强人工智能的区别。
人机对话的时候,机器为什么不能理解人们提的问题?我们看一个例子就知道了,我们在知识库里把‘特朗普是美国总统’这个事实,用‘特朗普-总统-美国’这三元组存在计算机里面,如果你提的问题是‘谁是美国总统’?机器马上回答出来:‘特朗普’。但是你如果问其它有关的问题,如‘特朗普是一个人吗’?‘特朗普是一个美国人吗’?‘美国有没有总统’?它都回答不了。它太傻了,任何一个小学生,你只要告诉他特朗普是美国总统,后面这几个问题他们绝对回答得出来。机器为什么回答不了后面的三个问题呢?就是这个系统太笨了,没有常识,也没有常识推理。既然特朗普是美国的总统,美国当然有总统,但是它连这一点常识的推理能力都没有。所以要解决这个问题,必须在系统中加上常识库、常识推理,没有做到这一步,人机对话系统中机器不可能具有理解能力。但是大家知道,建立常识库是一项‘AI 的曼哈顿工程’。大家想想常识库多么不好建,怎么告诉计算机,什么叫吃饭,怎么告诉计算机,什么叫睡觉,什么叫做睡不着觉,什么叫做梦,这些对人工智能来说都非常难,美国在 1984 年就搞了这样一个常识库的工程,做到现在还没完全做出来。可见,要走向真正的人工智能,有理解的人工智能,是一条很漫长的路。