在量子力学里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种称为波粒二象性的量子行为是微观粒子的基本属性之一。
波粒二象性指的是微观粒子显示出的波动性与粒子性。波动所具有的波长与频率意味着它在空间方面与时间方面都具有延伸性。
而粒子总是可以被观测到其在某时间与某空间的明确位置与动量。采用哥本哈根诠释,更广义的互补原理可以用来解释波粒二象性。互补原理阐明,量子现象可以用一种方法或另外一种共轭方法来观察,但不能同时用两种相互共轭的方法来观察。
在经典力学里,研究对象总是被明确区分为“纯”粒子和“纯”波动。前者组成了我们常说的“物质”,后者的典型例子则是光波。
波粒二象性解决了这个“纯”粒子和“纯”波动的困扰。它提供了一个理论框架,使得任何物质有时能够表现出粒子性质,有时又能够表现出波动性质。
量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。
这个波函数具有叠加性,它们能够像波一样互相干涉。同时,波函数也被解释为描述粒子出现在特定位置的机率幅。这样,粒子性和波动性就统一在同一个解释中。
之所以在日常生活中观察不到物体的波动性,是因为他们质量太大,导致德布罗意波长比可观察的极限尺寸要小很多,因此可能发生波动性质的尺寸在日常生活经验范围之外。这也是为什么经典力学能够令人满意地解释“自然现象”。反之,对于基本粒子来说,它们的质量和尺寸局限于量子力学所描述的范围之内,因而与我们所习惯的图景相差甚远。
在十九世纪后期,日臻成熟的原子论逐渐盛行,根据原子理论的看法,物质都是由微小的粒子--原子构成,例如,约瑟夫·汤姆孙的阴极射线实验证实,电流是由被称为电子的粒子所组成。
在那时,物理学者认为大多数的物质是由粒子所组成。与此同时,波动论已经被相当深入地研究,包括干涉和衍射等现象。由于光波在杨氏双缝实验、夫琅禾费衍射实验中所展现出的特性,明显地说明它是一种波动。
不过在二十世纪来临之时,这些观点面临了一些挑战。1905年,阿尔伯特·爱因斯坦对于光电效应用光子的概念来解释,物理学者开始意识到光波具有波动和粒子的双重性质。
到1924年,路易·德布罗意提出“物质波”假说,他主张,“一切物质”都具有波粒二象性,即具有波动和粒子的双重性质。根据德布罗意假说,电子是应该会具有干涉和衍射等波动现象。
1927年,克林顿·戴维森与雷斯特·革末设计与完成的戴维森-革末实验成功证实了德布罗意假说。
最早人们做了很多的光学实验,较为完全的光理论最早是由克里斯蒂安·惠更斯发展成型,他提出了一种光波动说。使用这理论,他能够解释光波如何因相互干涉而形成波前,在波前的每一点可以认为是产生球面次波的点波源,而以后任何时刻的波前则可看作是这些次波的包络。从他的原理,可以给出波的直线传播与球面传播的定性解释,并且推导出反射定律与折射定律,但是他并不能解释,为什么当光波遇到边缘、孔径或狭缝时,会偏离直线传播,即形成衍射效应。
惠更斯假定次波只会朝前方传播,而不会朝后方传播。他并没有解释为什么会发生这种物理行为。
稍后,艾萨克·牛顿提出了光微粒说。他认为光是由非常奥妙的微粒组成,遵守运动定律。这可以合理解释光的直线移动和反射性质。但是,对于光的折射与衍射性质,牛顿的解释并不很令人满意,他遭遇到较大的困难。
由于牛顿无与伦比的学术地位,他的光粒子理论在一个多世纪内无人敢于挑战,而惠更斯的理论则渐渐为人淡忘。直到十九世纪初衍射现象被发现,光的波动理论才重新得到承认。而光的波动性与粒子性的争论从未平息。