上面讲了地图发展趋势,高精度地图发展趋势会从专业测绘向众包更新发展。上图有几个的采集方式,最上面是专业测绘车,这是我们几个图商按照功能制作,它的成本和精度都很高,但是可以做到这种专业测绘车的很少,它通过自主采集半自动化以及全自动化生产的方式获得了高精度的矢量地图,矢量地图包括车道级拓朴、车道边线、道路区间以及ADAS数据信息,它能够满足车道级的导航功能的自动驾驶,精度和可信度高,问题是成本非常高。
在这些专业的测绘车采集高新技术基础上,我们认为可以出现一种Low Cost采集车,它的成本和精度比较低,它的数量可以多一些,它会通过采集一些精度稍低的数据,通过人工验收、数据的差分融合等技术手段来不断地更新高精度的矢量地图。最下面是众包车,成本最低,精度也很低,我相信未来自动驾驶车很多会采用同样的设备来去做自动驾驶,优势在于数量非常大。
通过数量大弥补单个数据质量精度低的问题,可通过大数据分析获得动态交通情报。对地图比较了解的人会知道,高精地图实际上分静态地图、动态地图,很多动态信息是来自于众包车辆的数据获取,包括拥堵、交通事故、天气等,还可通过多视几何、摄影测量、深度强化学习以及云雾计算等方式生成语义地图和特征地图,另外也通过大量数据共享、挖掘、分析和融合来提升精度和可信度。
众包车辆生成的数据,除了生成动态的信息能够更新一部分高清地图外,还生成了一些感知地图,用于自动驾驶辅助定位。
简单小结众包更新的创新和优势,首先众包更新是实现实时更新的低成本和可量产化的方案,具有一些非常显著的优势,中国大概600多万公里的道路数据,如果按照专业测绘的方式采集,将是个天文数字,因此如果有一个基础的高精度地图网,通过众包的方式来更新地图获得城市细道路数据,它将是低成本可量产的方案。
第二,在商业模式上也有新的吸引力,数据的使用者同时也是数据的提供者,在未来商业模式上可能会发生一些变化,随着区块链技术的发展,可能会看到新的商业模式出现。在技术上,它的难度在于精度和可信度都比较低,但是随着大数据技术的发展以及AI技术的突破,这些技术门槛会逐步降低,同时精度和可信度将逐步提高。
第二部分讲一下众包更新的理论基础。实际上,众包的概念很早就已提出,讲三种形态,第一是UGC,用户原创内容,这个概念来自于互联网,用户就是网络内容浏览者,也是网络内容的创造者,也得到了非常广泛的应用,比如维基百科、豆瓣、知乎以及抖音,每个人都可以上传和分享自己的作品,都可以作为自媒体在网上活跃起来。
第二是刘经南院士提出的泛在测绘的概念,传统测绘是利用测量的仪器测定地球表面形态的地理要素以及地表人工设施形状、大小以及空间位置等属性。根据观测到的数据,通过地图制图方法,向地面的自然形态人工设计绘制成地图,而泛在测绘是在任何地点、任何时间为认知环境和人而使用和创造地图的活动,可以理解为所见即所测绘,使用即测绘。
第三个是群智感知,是将普通用户的移动设备作为基本感知单元,通过通讯的方式形成群智感知网络,从而实现感知任务分发和感知数据收集,完成大规模复杂的社会感知任务。
接下来我们讲众包更新的数据来源和分类,可以分为四大类。第一是轨迹数据,众包、自动驾驶或其他的辅助安全驾驶有相通的功能,首先定位必须是一个高精度的定位来源,一般来自于GNSS+惯导的位置感知数据以及通过SLAM或相关技术把视觉定位、高精度定位、激光雷达定位、毫米波雷达定位等定位方式进行融合得到一个融合定位的高精度轨迹数据。但在轨迹数据中,单一的轨迹信息价值非常低,必须形成规模效应。我们要形成的产品主要是拓扑网和拓扑网的更新,同时还包括一些动态的交通信息。
第二是图像数据,图像数据包含的信息量是非常大的,大部分是非结构化的数据。实际上,这些非结构化数据要处理成结构化数据,是要通过标定和AI算法把图像数据变成矢量化数据。
第三是雷达数据,雷达包括激光雷达、毫米波雷达、一些超声波雷达。激光雷达的精度非常高的,成本也非常高,这是最大的缺点。而毫米波雷达也能够覆盖所有应用,在一些场景重构方面,对数据精度的提升很有价值。通常,激光雷达精度是足够的,如果使用毫米波雷达,需要跟图像数据等其他的数据进行融合才能得到比较好且能使用的数据。
第四是CAN数据,包含车内各个零部件在毫秒级层面上输出的数据,这些数据的挖掘对做无人驾驶的决策算法有非常好的作用。