首先,传感器数据融合还存在着很多问题,传感器的种类很多,性能的差异非常大,传感器的数据格式不统一,多传感器数据融合技术仍存在着一些技术壁垒。而在技术壁垒方面,可以有以下几个问题。第一,还没有建立起统一的融合理论和有效广义融合模型及算法;第二,对数据融合的具体方法,目前的研究还在初步阶段,虽然有一些比较好的成果,但我觉得它还有很大的发展空间;第三,还没有很好地解决融合系统的容错性和鲁棒性的问题,虽然大数据融合包括深度学习是概率性的问题,但是我们还无法量化它的鲁棒性。
第四,关联的二义性是数据融合的主要障碍以及数据融合系统中的设计也还存在着很多实际的问题。第五,在上传协议方面,目前会针对已有的车联网车辆数据上传协议,主要用于车辆间动态信息的交互,需要针对众包制图方面扩展协议内容。虽然here在国际上也有一个Sensoris是相关的协议,但是这并不是一个统一的标准,国内也在做一些标准化工作,在标准化组织方面,我们几个图商在国家的指导下,将会形成一些标准化的工作。
另外一个问题是政策问题。实际上,众包数据的搜集是有一些政策的。虽然没有明确的行政许可,但是根据测绘法对策行为的定义:企业性质的大范围带GPS和不带GPS的地理数据搜集都属于测绘行为,数据需要由甲级导航电子地图资质的图商来收集处理。
可以看到,通过定义,对众包数据的搜集有着极大的限制。导航或自动驾驶汽车搜集车端带GPS数据都属于测绘行为,如果GPS数据需要加工成图,需要有资质的企业来进行数据的搜集和加工;如果GPS数据用于对接监管平台,需要通过有资质的图商对数据进行管理和监管。对于不带GPS的数据,比如影像、视频等,如果是大范围的、企业性质的采集也属于测绘行为,因此这并不是所有的人、图商或者车厂能够采集的领域。
还有更加严格的政策监管,包括基础地图生产、地图数据存储、地图更新、地图出版销售等等各个环节都需要有资质的限制。通过资质可以看到,对众包更新会有很大的限制,但是这对未来的自动驾驶以及众包更新来说是一个大的趋势,国家将自动驾驶作为一个战略发展方向,我相信在未来的政策限制方面,国家会有一定的考虑的。
最后来看众包更新存在的一些技术上的瓶颈,主要在于众包的制图能力,它是不是真的能够达到我们所期待的众包更新。第一,数据质量与覆盖范围终端设备数量是密切相关的,我们要想获得众包更新的数据,前提是有大量的、可以完全跑的相关众包车辆。从采集端来看,为了保证精度,每条车道上最好能够有一定的覆盖,一般情况下10遍左右,当然有更多是最好的,因此在众包地图中,它一定要有足够大的用户量,这可能就会出现鸡生蛋和蛋生鸡的过程。
在数据内容上,我们需要一个完整的车道系统网络,不光只是一个车道边线和中心线,还需要得到它的拓扑关系,包括虚拟连接线;众包数据在精度属性上还有点欠缺,在右下角的图上,我们可以看到有些地方的虚实线有断裂、有些地物的标识不精准以及路口内虚拟连接线有交叉等等,这些问题都会导致在精度方面的问题。
虽然未来我们会获得一些精度和属性上有点欠缺的数据,但我们希望能够像之前说的,以专业的采集数据为基准,与众包数据通过在精度方面的融合以及贝叶斯过滤算法等等技术去提高精度。随着技术的发展,精度也会逐步提高,在未来,通过这种方式肯定能够满足我们数据更新需求。
以上就是跟大家分享的内容,大家有什么相关的问题,我们可以一起来讨论。谢谢大家。
罗跃军:1.众包数据来源有很多种,不同传感器涉及的众包数据精度也会不同,算法也会影响最终精度。目前我们的众包更新还在POC的阶段,我们会根据需求选择不同的融合方案,同时也在研究一些更好的传感器,在成本和精度方面能够平衡的传感器中进行选用,通过深度学习、多视几何的方法,最后得到的精度能够满足我们对自动驾驶的需求,具体的数据会根据最终选型来定。
2.众包的优势在前面的PPT已经讲过,跟专业的激光雷达测量车比,成本较低,数据来源非常丰富,同时实质性非常好;劣势是精度比较低,处理会更加复杂。